

Sorbent Enhancement Additive Technology for Mercury Control

Kickoff Meeting

DOE NETL

Morgantown, WV

August 24, 2006

Jason Laumb
Energy & Environmental Research Center

Presentation Outline

- Technology Introduction
- Past Experience
- Sites for this Study
 - Hawthorn Unit 5 (Kansas City Power & Light)
 - Mill Creek Unit 4(Louisville Gas & Electric)
- Test Plan for HAW 5
- Test Plan for MC 4
- Schedule

Sorbent Enhancement Additive (SEA) Technology

- SEA1 (B&W/Niro, U.S. patent 5,435,980)
 - Chloride added to coal feed.
 - Hg capture can be enhanced with carbon.
- SEA2 T2
 - Added upstream of the particulate control device.
 - Carbon treated in situ.
 - Tailored to desired Hg removal.

History of SEA2 Technology

- First testing done on ND lignite with SEA2 addition in coal.
- Later lignite tests involving co-addition with PAC in to PCD to be more effective (SEA2-T2).
- Pilot-scale projects with PRB (injection with coal) showed promise.
- Large-scale tests at Hawthorn and Hoot Lake validated SEA2-T2 effectiveness for PRB.
- All future tests conducted with SEA2-T2.

North Dakota Lignite SDA-FF

Pilot-Scale SDA-ESP, PRB

Pilot-Scale SDA-FF, PRB

Hawthorn Unit 5

Coal, Hg/Cl Analysis

		Mercury		Chlorine		
Date	 μg/g	lb/TBtu	μg/g	lb/TBtu		
7/11/2005	0.0852	7.32	6	515.82		
7/12/2005	0.0955	8.20	6	515.24		
7/14/2005	0.0996	8.53	7	599.73		
7/15/2005	0.114	10.00	6	526.45		
7/15/2005	0.0922	8.26	7	627.30		
7/17/2005	0.0691	5.95	5	430.51		
7/18/2005	0.0992	8.72	7	615.49		
7/19/2005	0.111	9.64	6	521.10		
7/20/2005	0.0956	8.38	7	613.87		
7/23/2005	0.0659	5.76	6	524.61		
7/24/2005	0.0711	6.31	9	798.51		
7/25/2005	0.116	10.19	7	615.06		
7/26/2005	0.0932	8.05	5	431.93		

Parametric Test Plan

Test No.	Hg Control Additive	Objective – Hg Reduction
1	None	Baseline
2	CaCl ₂ only	400 ppmw in coal
3	CaCl ₂ only	1000 ppmw in coal
4	PAC only	3 lb/Macf
5	PAC only	10 lb/Macf
6	$CaCl_2 + PAC$	250 ppmw, 3 lb/Macf
7	SEA2 + PAC	0.025 lb/lb, 3 lb/Macf
8	SEA2 + PAC	0.05 lb/lb, 3 lb/Macf
9	SEA2 + PAC	Vary SEA2 and PAC to determine maximum reduction
10	SEA2 + PAC	Extended test

Hawthorn Test Results

Mercury Control Additive

Hawthorn Test Results (SEA1)

Dust Loading at SDA Inlet

		Ash Mercury Concentration,	Particulate-Bound Mercury,
Hg Control Additive	Dust Loading, ton/TBtu	μg/g	lb/TBtu
Baseline ^a	1880.6	0.385	1.45
0.23 lb PAC/Macf	2720.1	0.494	2.69
2 lb PAC/Macf	1689.6	0.698	2.36
8 lb PAC/Macf	3121.7	1.213	7.57
2 lb PAC/Macf + 250 ppm CaCl ₂ (average of two)	2120.4	0.74	3.14
0.5 lb PAC/Macf + SEA2 @ 0.05 lb/lb C	2320.5	1.199	5.57
0.5 lb PAC/Macf + SEA2 @ 0.025 lb/lb C	2363.4	1.197	5.66
<2 lb PAC/Macf + SEA2 @ 0.05 lb/lb C	2100	1.246	5.24
0.5 lb PAC/Macf + SEA2 @ 0.1 lb/lb C	2068.5	1.591	6.58

Hg Speciation at SCR Outlet

Hg Speciation at SDA Inlet

Hg Speciation at Stack

Conclusions

- 1000 ppm Cl addition (no PAC) at Hawthorn provided an 80%+ Hg capture for 6 hours.
- >90% Hg capture was possible (for short periods of time) using SEA2 and PAC.
- >90% REDUCTION is possible with SEA2
 T2 (SEA2 + PAC).

Goals & Objectives

 To demonstrate 90% REDUCTION in mercury emissions at Hawthorn Unit 5 and Mill Creek Unit 4.

Sites

Plant	Utility Owner	Coal	Boiler Type	Boiler Size, MW	Particulate Control	SO ₂ Control	NO _x Control
HAW5	KCP&L	PRB	Wall- fired	550	FF	SDA	LNB ¹ , OFA ² , SCR
MC4	LG&E	Eastern bituminous	Wall- fired	530	ESP/SCA= 232	Wet FGD	LNB, SCR

Low-NO_x burners.Overfire air.

Task Structure/Schedule

Test Plan for Hawthorn

- Based on previous work the test plan for Hawthorn will concentrate on the following technologies:
 - SEA 1 Only
 - SEA 1 + PAC
 - -SEA 2 T2 (SEA 2 + PAC)

Parametric Test Plan for Hawthorn

Test		Hg Control	SEA injection		SEA 1	SEA 2	PAC
#	Date	Technology	Location	Test	Coal Equiv.	lb/lb PAC	lb/Macf
1	18-Sep	None	NA	Baseline			
	19-Sep	None	NA	Baseline			
2	20-Sep	SEA1 only (CaCl2)	Coal	Rate 1	800		
3	21-Sep	SEA1 only (CaCl2)	Coal	Rate 2	1000		
4	22-Sep	SEA1 only (CaCl2)	Coal	Rate 3	1200		
5	23-Sep	SEA1 + PAC	coal & prior to SDA	Rate 1	800		1 & 3
6	24-Sep	SEA1 + PAC	coal & prior to SDA	Rate 2	1000		1 & 3
7	25-Sep	SEA1 + PAC	coal & prior to SDA	Rate 3	1200		1 & 3
8	26-Sep	SEA2-T2 + PAC	prior to SDA	Rate 1		0.0125	1 & 3
9	27-Sep	SEA2-T2 + PAC	prior to SDA	Rate 2		0.05	1 & 3
10	28-Sep	SEA2-T2 + PAC	prior to SDA	Rate 3		0.1	1 & 3

Mill Creek Unit 4

Sample Location	SCR Inlet, µg/Nm ³	SCR Outlet, µg/Nm ³	wet-FGD inlet, µg/Nm ³	Stack, µg/Nm³	Reduction, %
With the SCR in Service					
Hg ^p	0.02	0.03	0.00	0.00	
Hg ⁰	8.32	2.83	0.33	3.97	
Hg ²⁺	0.94	5.05	7.60	0.54	
Hg _{total}	9.27	7.90	7.93	4.50	43.3
With the SCR Bypassed					
Hg ^p			0.07	0.05	
Hg ⁰			2.44	2.63	
Hg ²⁺			6.79	0.55	
Hg _{total}			9.30	3.23	65.3

Mill Creek Unit 4 Cont.

- Mill Creek offers challenges with the SCR in service!
 - Possibly due to reactions with SO₃.
- SEA2 T2 will be primary technology tested at Mill Creek.

Mill Creek Test Plan SCR On

Test No.	Hg Control Technology	SEA Injection Location	Test		
1	None	_	Baseline		
2	SEA2 only	Prior to SCR	Rate 1		
3	SEA2 only	Prior to SCR	Rate 2		
4	SEA2 only	Prior to SCR	Rate 3		
5	SEA2 only	Between the SCR and air heater	Rate 1		
6	SEA2 only	Between the SCR and air heater	Rate 2		
7	PAC only	_	1 lb/Macf		
8	SEA2-T2 + PAC	Prior to SCR	Optimum SEA2-T2 + 1 lb/Macf PAC		
9	SEA2-T2 + PAC	Prior to SCR	Optimum SEA2-T2 + 0.5 lb/Macf PAC		
10	SEA2-T2 + PAC	Between the SCR and air heater	Optimum SEA2-T2 + 0.5 lb/Macf PAC		
11–12	Contingency tests (potentially tests with B&W additive to prevent mercury reemission across the wet FGD)				

Mill Creek Test Plan SCR Off

Test No.	Hg Control		The state of the s
	Technology	SEA Injection Location	Test
1	None	1	Baseline
2	SEA2 only	Determined from Part 1	Rate 1
3	SEA2 only	Determined from Part 1	Rate 2
4	SEA2 only	Determined from Part 1	Rate 3
5	PAC only	-	1 lb/Macf
6	SEA2-T2 + PAC	Determined from Part 1	Optimum SEA2-T2 + 1 lb/Macf PAC
7	SEA2-T2 + PAC	Determined from Part 1	Optimum SEA2-T2 + 0.5 lb/Macf PAC
8–9	Contingency tests (p	otentially tests with B&W additive to prevent me	ercury reemission across the wet FGD

Sampling Locations (Both Sites)

- Continuous Mercury Monitors PCD inlet and stack for parametric tests. Stack only for long-term.
- Ontario Hydro PCD inlet and stack for parametric tests and long term.
- Solid Samples Daily coal, ash, slurry samples during parametric. Three per week during long term.
- EPA Method 5 PCD inlet & stack?

Project Budget

- Total Project Cost \$2.99M
 - DOE \$2.2M
 - B&W \$400k
 - KCP&L \$100k (in-kind)
 - LG&E \$50k (in-kind)
 - Norit 125k (in-kind)
 - SEA Supplier \$76k (in-kind)

Personnel

